## **User Manual**

Version V2.0-20220706

# User Manual For SMAJAYU JY302

## **GNSS Auto-Steering System**

©2020 SMAJAYU Inc. All rights reserved.





# **Revision History**

| Version | <b>Revision Date</b> | Change Summary         |
|---------|----------------------|------------------------|
| 1.0     | 16/04/2019           | Initial Release        |
| 2.0     | 21/08/2020           | Upgrade Product Figure |



# **Table of Contents**

| Revision History                  |
|-----------------------------------|
| Table of Contents                 |
| List of Figures                   |
| List of Tables                    |
| 1. Introduction                   |
| 1.1 Overview                      |
| 1.2 System Composition            |
| 1.3 Main Devices in the package10 |
| 2. General Operations 13          |
| 2.1 Assembly and Installation     |
| 2.2 Software Operations           |
| 3. Gyro Calibration               |
| 3.1 Single Gyro                   |
| 4. Specifications                 |
| 4.1 T100 Control Tablet 40        |
| 4.2 A10 GNSS Antenna              |
| 4.3 EMS2 Motor Wheel              |
| 5. Typical Applications           |
| 5.1 Base Station example          |
| 5.2 Spraying Pesticide            |
| 5.3 Transplanting                 |
| 5.4 Other tractor work            |
| 6. Appendix-1                     |
| 7. Terminology                    |
| 8. Set Imple and Joint width      |
| 8.1 Abstract                      |
| 8.2 Specific operation process    |
| 9. JY302 FAQ                      |



# **List of Figures**

| Figure 1.1 Major parts in JY302Auto-Steering System                      |
|--------------------------------------------------------------------------|
| Figure 1.2 JY302 auto-steering system structure9                         |
| Figure 1.3 T100 Control Tablet 10                                        |
| Figure 1.4 A10 GNSS Antenna11                                            |
| Figure 1.5 EMS2 Motor Wheel                                              |
| Figure 1.6 Angle sensor                                                  |
| Figure 2.1 Assembly diagram of EMS2motor wheel 13                        |
| Figure 2.2 Descriptions of the EMS2 assembly components 14               |
| Figure 2.3 Components needed for electric motor                          |
| Figure 2.4 Installation example of electric motor                        |
| Figure 2.5 Installation example of bracket for fixating EMS2 Motor Wheel |
|                                                                          |
| Figure 2.6 Installation example of EMS2 Motor Wheel 16                   |
| Figure 2.7 Components needed to install angle sensor 17                  |
| Figure 2.8 Install the parts to fixate angle sensor                      |
| Figure 2.9 Possible position of angle sensor – 1 18                      |
| Figure 2.10 Possible position of angle sensor – 2                        |
| Figure 2.11 Installation example of angle sensor                         |
| Figure 2.12 Assembly diagram of dual-antenna                             |
| Figure 2.13 Descriptions of dual-antenna components                      |
| Figure 2.14 Installation example of dual-antenna-1                       |
| Figure 2.15 Installation example of dual-antenna-2                       |
| Figure 2.16 Main Cable with multiple connectors                          |
| Figure 2.17 Power extension cable with two wires                         |
| Figure 2.18 Angle Sensor                                                 |
| Figure 2.19 Cable for AttitudeSensor (IMU)                               |
| Figure 2.20 Attitude Sensor (IMU)                                        |



| Figure 2.21 Power Switch with cable                                     | 24 |
|-------------------------------------------------------------------------|----|
| Figure 2.22 Main Cable connects to EMS2 Motor Wheel                     | 24 |
| Figure 2.23 T100 Control Tablet connects to main cable and two antennas |    |
|                                                                         | 25 |
| Figure 2.24 Bracket for T100 Control Tablet                             | 25 |
| Figure 2.25 Home screen of T100 Control Tablet                          | 26 |
| Figure 2.26 Installation file of AutoSteer                              | 26 |
| Figure 2.27 Public liability disclaimer notice                          | 27 |
| Figure 2.28 AutoSteer software main interface                           | 28 |
| Figure 2.29 RTK base configuration                                      | 28 |
| Figure 2.30 Vehicle parameter configuration – antenna height            | 29 |
| Figure 2.31 Vehicle parameter configuration – antenna lateral offset    | 29 |
| Figure 2.32 Vehicle parameter configuration – antenna distance          | 29 |
| Figure 2.33 Vehicle parameter configuration – antenna fore              | 30 |
| Figure 2.34 Vehicle parameter configuration – wheelbase                 | 30 |
| Figure 2.35 Vehicle parameter configuration – front wheel               | 30 |
| Figure 2.36 System setting interface                                    | 31 |
| Figure 2.37 Registration                                                | 32 |
| Figure 2.38 More settings in system setting                             | 32 |
| Figure 2.39 Angel Sensor Adjust                                         | 32 |
| Figure 2.40 Terrain compensation wizard                                 | 33 |
| Figure 2.41 Calibration wizard                                          | 33 |
| Figure 2.42 Set width and junction                                      | 33 |
| Figure 2.43 Import AB line                                              | 34 |
| Figure 2.44 Agricultural operation in progress                          | 34 |
| Figure 4.1 AllyNet System Structure                                     | 40 |
| Figure 4.2 Spraying pesticide using JY302 auto-steering system          | 43 |
| Figure 4.3 Transplanting using JY302auto-steering system                | 43 |
| Figure 4.4 Other tractor works using JY302auto-steering system          | 44 |



## **List of Tables**

| Table 3.1 T100 Control Tablet Specifications | 35 |
|----------------------------------------------|----|
| Table 3.2 A10 GNSS Antenna                   | 37 |
| Table 3.3 EMS2 Motor Wheel                   | 38 |
| Table 5.1 List of AvailableSpine Shafts      | 45 |

### \*\*\*When you need to enter the registration code, an interface will pop up with the machine code on it. Please enter the corresponding registration code according to the machine code.

### Please click the link to check the registration code:

https://drive.google.com/drive/folders/1hoZ0AU8wWquh YHr8y I6hujdSRlwawu?usp=sharing



## **1.** Introduction

This chapter mainly introduces the overview, system component and package list of the SMAJAYU JY302 GNSS Auto-Steering System.

### **1.1** Overview

The SMAJAYU JY302 Auto-Steering System is an automatic steering system which uses high-torque motor control steering wheel. It integrates the advantages of convenient installation, large torque, high precision, low noise, low heat, and quick debugging. It is suitable for various applications of tractors, harvesting machines, plant protection machinery, rice transplants and other agricultural vehicles.

The system consists of a base station and a vehicle control part. The vehicle control part includes a control tablet integrated with a high-precision GNSS board, a steering wheel motor with a built-in controller, and an angle sensor. It can be widely used for sowing, cultivating, trenching, ridging, spraying pesticide, transplanting, land consolidation, harvesting and other work scenarios.



## **1.2** System Composition

The whole system includes one T100 Control Tablet, one EMS2 Motor Wheel, two A10 GNSS antennas, one Angle Sensor, and other accessory cables. They need external power source to power them up, from vehicle or independent power supply. The two antennas are installed on the top the vehicle, the angle sensor is installed on wheel of the vehicle, the motor wheel is installed to replace the original steering wheel, and the tablet is installed beside the motor wheel for monitoring purpose.



Figure 1.1 Major parts in JY302 Auto-Steering System





Figure 1.2 JY302 auto-steering system structure



## **1.3** Main Devices in the package

#### 1.3.1 T100 Control Tablet

T100 Control Tablet is a portable, robust android tablet which is equipped with a built-in high-precision GNSS board offering centimeter level accuracy positioning and heading.

T100 Control Tablet provides RS232, RS485, USB2.0, CAN etc. interfaces to connect with other equipment, and supports Wi-Fi, 3G/4G LTE wireless communication. The detailed specification refers to section 3.1 T100 Control Tablet. The outlook of T100 Control Tablet is shown as below.



Figure 1.3 T100 Control Tablet

### 1.3.2 A10 GNSS antenna

A10 GNSS antenna is used to receive the RF signal from the satellites.



There are two antennas in the package. The detailed specification of this antenna refers to section 3.2 A10 GNSS Antenna.



Figure 1.4 A10 GNSS Antenna

If an antenna from other companies is used, contact SMAJAYU to obtain permission, or the system may not work as expected.

#### **1.3.3 EMS2 Motor Wheel**

The EMS2 Motor Wheel is an electric motor steering wheel. It is designed for easy-to-install operation. With high-torque, direct-drive electric motor, EMS2 can provide up to 2.5cm RTK accuracy. The detailed specification of this motor wheel refers to section 3.3 EMS2 Motor Wheel.



Figure 1.5 EMS2 Motor Wheel



### 1.3.4 Angle Sensor

Angle sensor is an auxiliary part which provides higher accuracy and stability. It is used to detect the angle change of the steering tire.



Figure 1.6 Angle sensor



# **2.** General Operations

This chapter introduces how to set up the system and make it start working properly.

## 2.1 Assembly and Installation

#### **2.1.1 EMS2 installation**

The EMS2 Motor Wheel is an electric motor steering wheel. The most important part is the **spline sleeve**, which is based on the selection of the vehicle model refer to the table in Appendix. Please indicate your vehicle model before placing order of this system. The other components include Loge cover, steering wheel, flange, bracket and screws which are shown as below.



Figure 2.1 Assembly diagram of EMS2 motor wheel





Figure 2.2 Descriptions of the EMS2 assembly components

The detailed steps of installing EMS2 Motor Wheel are shown as below.

1) Prepare the components needed for EMS2 Electric Motor.



Figure 2.3 Components needed for electric motor

2) Use the corresponding screws in the package to fixate



the bracket and motor on the vehicle to replace the original steering wheel.



Figure 2.4 Installation example of electric motor



Figure 2.5 Installation example of bracket for fixating EMS2 Motor Wheel

3) Use screws to install the steering wheel and Loge cover.





Figure 2.6 Installation example of EMS2 Motor Wheel

4) Now the installation of EMS2 Motor Wheel is completed. It should be connected to the main cable after all parts are assembled properly. The cables connection refers to section 2.1.4 Cables Connection.



## **2.1.2** Angle Sensor installation

The detailed steps of installing Angle Sensor are shown as below.

1) Prepare the components needed for installing Angle Sensor.



Figure 2.7 Components needed to install angle sensor

2) Install angle sensor on left front wheel. Take off screw on left front wheel and install angel sensor board, notes plane with screw holes on angel should face to vehicle body when installation.



Figure 2.8 Install the parts to fixate angle sensor



Mind turn angel sensor in right position before install on board. Please make sure plane A and plane B keep parallel and face to vehicle body when installation.



 Adjust the position of angle sensor to be properly installed. Find the best position and make sure angle sensor could turn in normally. Then, use screw fix angle sensor bracket.



Figure 2.9 Possible position of angle sensor -1





Figure 2.10 Fix angle sensor -2

 Extend board could be used if this part do not have a screw could use for fix angel sensor bracket.



Figure 2.11 Installation example of angle sensor

5) Now the installation of Angle Sensor is completed. It should be connected to the main cable after all parts are assembled properly. The cables connection refers to section 2.1.4 Cables Connection.

#### **2.1.3** Dual-antenna installation

Two GNSS antennas are fixed on the roof of the vehicle. The line between the two antennas should be perpendicular to the direction of the vehicle's route. Normally the left antenna is the primary antenna, and the right antenna is the secondary antenna.



Figure 2.12 Assembly diagram of dual antenna



Figure 2.13 Descriptions of dual-antenna components





Figure 2.14 Installation example of dual-antenna – 1



Figure 2.15 Installation example of dual-antenna – 2



### **2.1.4** Cables Connection

The cables connection should be paid much attention during assembly as there are various connectors on the main cable which is shown below.



Figure 2.16 Main Cable with multiple connectors





The current hardware supports 12V and 24V power supplies



Figure 2.17 Power extension cable with two wires

Figure 2.18 Angle Sensor

The Attitude Sensor (IMU) is optional. It is only required when the angle sensor is not able to be installed on the vehicle.





Figure 2.19 Cable for AttitudeSensor (IMU)

Figure 2.20 Attitude Sensor (IMU)

23 / 56





Figure 2.21 Power Switch with cable

Figure 2.22 Main Cable connects to EMS2 Motor Wheel





Normally the T100 Control Tablet is installed in the control room of the vehicle using the bracket which is shown as below.



Figure 2.24 Bracket for T100 Control Tablet



### **2.2** Software Operations

The software pre-installed in the T100 Control Tablet is called Autosteer.

#### **2.2.1** Software Installation

Power on the T100 Control Tablet by turning on the power switch after all cables and parts are assembled properly. The home screen is shown as below.



Figure 2.25 Home screen of T100 Control Tablet

If Autosteer application should be re-installed for any reason, copy the .apk file into a USB drive and insert it to the USB port of the T100 Control Tablet.



Figure 2.26 Installation file of Autosteer



Click the installation file (.apk file) of Autosteer to install the software to the tablet. The icon will be on the home screen which is shown in Figure 2.25 Home screen of T100 Control Tablet.

Click the Autosteer app on the home screen to enter the software, users should accept the public liability disclaimer notice to enter the main interface of the software.



Figure 2.27 Public liability disclaimer notice

### 2.2.2 Registration.

Please ask SMAJAYU engineer support to complete registration.

Also, please supply follow information to SMAJAYU Support.

1) Device Code. "System Setting" >> "More" >> "…"

| ninga           |           |                         | Tuck .       |    |               |         | System a | étlings        |      | Q \$ 24 X 9:16    |
|-----------------|-----------|-------------------------|--------------|----|---------------|---------|----------|----------------|------|-------------------|
| Angle sensor    | 1.        | Heading mode            | Online value | þ  |               |         |          | Angle sensor   | 1    | Heading mode      |
| Azimuth offset  | -1.2      | Set heading             | Angle sensor | R  | ight wheel    |         |          | Azimuth offset | -1.2 | Set heading       |
|                 |           | input regcode.          | Angle sensor | R  | Device Code   | 4252131 |          |                |      | ioput regcode,    |
| Roll offset     | 0         | Update                  | Angle sensor | F  | Register Code | c936f9  |          |                |      | coefficient       |
| Motor gain      | 10        | Plugging coefficient    | ECU_MOTOR    | μ  |               |         |          |                |      | he board          |
| Manual          |           | Reboot the board        | AB line type |    |               |         |          |                |      | motor version     |
|                 |           | Get the motor version   | Alarm        | 20 | Dk            |         |          |                |      | Cancel rential 1  |
| Area-statistics | Automatic | Get the maximum current |              |    |               |         |          |                |      | Set differential2 |
| Unit of         | mu        | Set differential 1      |              |    |               |         |          |                |      |                   |
|                 |           | Set differential2       |              |    |               | _       | _        | 1              |      |                   |
|                 |           |                         |              |    | 5             | ĵ, ⊲    | 0        |                | 5    |                   |



- 2) Motor SN, PN and device code number.

3) Tablet PN and SN number.



4) Gyro PN and SN number. (If in use)



5) Upload JY302 device parts installation figures.

### **2.2.3** Software Activation

The software Autosteer is activated before shipping out to customer. If users encounter any situation which needs activate this software or any other questions on the software or firmware, please contact SMAJAYU technical support by email android.development@smajayu.com for guidance.

#### **2.2.4** Configurations



The main interface of Autosteer software is shown as below.

Figure 2.28 Autosteer software main interface

RTK configuration steps are:

- 1) Select [Base station] in the main interface.
- Select CORS or External Datalink mode, the external datalink can be a Ntrip Modem or a radio module.
- 4) Back to the main interface, RTK status becomes Fix.



3) Edit the information as below for example:



Figure 2.29 RTK base configuration

Vehicle configuration steps are:

1) Select [Vehicle Parameter] in the main interface.

| Back               | Vehicle I | Parameter            |                                       |     | 9 🗣 🖡 12:21 |
|--------------------|-----------|----------------------|---------------------------------------|-----|-------------|
| Antenna height2.3m | 5         | 7<br>4<br>1<br>Ciear | 8 9<br>5 6<br>2 3<br>. Delete<br>— Ok | 2.3 | m           |
| Last<br>C)×        | Next      | 0                    | <b>⊈</b> »                            |     |             |

Figure 2.30 Vehicle parameter configuration – antenna height

2) Fill the parameter and select [Next]. (0.8 m in normally)

| Back                   | V        | ehicle Parameter |         | •     | ▼ ■ 12:21 |
|------------------------|----------|------------------|---------|-------|-----------|
| Antenna lateral offset | 0.9m     |                  |         | 0.9 m |           |
| 1                      |          | 7                | 8 9     |       |           |
|                        |          | 4                | 5 6     |       |           |
|                        | ÷. 💌     | 1                | 2 3     |       |           |
| $\sim$                 | <b>T</b> | 0                | . Delet |       |           |
|                        |          | Clear            | — Ok    |       |           |
| Last                   | Next     |                  |         |       |           |
|                        | ς<br>Υ   | 0 0              | ן<br>בא |       |           |

 $Figure \ 2.31 \ Vehicle \ parameter \ configuration-antenna \ lateral \ offset$ 





Figure 2.32 Vehicle parameter configuration – antenna distance



Figure 2.33 Vehicle parameter configuration – antenna fore



Figure 2.34 Vehicle parameter configuration – wheelbase





Figure 2.35 Vehicle parameter configuration - front wheel

 After all the parameters are set, click [Back] on the upper left corner to return to the main interface.

#### 2.2.5 Calibration

Before the JY302 Auto-Steering system is enabled for the field work, it is recommended to perform the calibration for specific vehicle following below steps.



1) Select [System settings] in the main interface.

Figure 2.36 System setting interface



2) Select [more] in the lower right corner and select [Angle sensor

| Back         |             | anna 👘 🖓 S | ystem settings  |           | a data | ♥ \$ 🖬 其 9:44 |
|--------------|-------------|------------|-----------------|-----------|--------|---------------|
| Online value | 9           |            | Angle sensor    | 1         |        |               |
| Angle sensor | Right wheel |            | Azimuth offset  | 0         |        |               |
| Angle sensor | RTY120      |            | Roll offset     | 0         |        |               |
| Angle sensor | Face up     |            | Motor gain      | 10        |        |               |
| ECU_MOTOR    | POSITION    |            | Manual          | -         |        |               |
| AB line type | straight    |            | Area statistics | Automatic |        |               |
| Alarm        | 20          |            | Unit of         | mu        |        |               |
|              |             |            |                 |           |        |               |
|              |             | ⊅, ⊲       | 0 🗆             | <b>り</b>  |        |               |

position] correctly. The angel sensor position chosen of "Right Wheel" or "Left Wheel" is depend on the position of angel sensor installation. Angel sensor choose "RTY 90".

 Select [Middle], and then click [Get] to obtain the centering angle. The number should between 50-70. Please adjust angel sensor if the data is not in the range.



#### **Figure 2.39 Angel Sensor Adjust** Note: Before clicking [Get], ensure the front wheel of the vehicle is in the middle.

4) Select [Turn left] and [Turn right]. Click [Turn left] and [Turn right] respectively, and the front wheel will rotate 5 degrees in the corresponding direction, respectively. The minimum tire angle and maximum tire angle should be in the range from -20 to +120 degrees.

#### Note: Power up the vehicle before clicking the buttons.



# 5) Select [Terrain Compensation] and do the calibration

according to the screen wizard.

| Back                                                                                                                                                                                                                                                 | Τe                                                               | errain con                                | npensation ca                                                                                  | alibration                                   | _                                     |                       | • • • 6:04  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|-----------------------|-------------|
| Step1:Find a flat field.<br>Step2:Stop the car and remember w<br>Step3: Wait for the word start first a<br>previous step.<br>Step4: Click the start second collect<br>Step5: Wait for the word start second<br>Step5: Wait for the word start second | here the car s<br>cquisition but<br>ion button.<br>d acquisition | tops. Click<br>ton to turn<br>button to t | the start first a<br>to finish, turn th<br>turn to completi<br>turn to completi<br>acquisition | cquisition h<br>ne car 180 d<br>on, click ca | button.<br>degrees, and<br>Iculation. | stop at the same posi | tion as the |
| average 1:                                                                                                                                                                                                                                           | average                                                          | 2:                                        | Roll value                                                                                     |                                              |                                       |                       |             |
|                                                                                                                                                                                                                                                      | Ъ                                                                | $\bigtriangledown$                        | 0                                                                                              |                                              | <b>り</b>                              |                       |             |

Figure 2.40 Terrain compensation wizard

### Note: If the ground is not flat, roll debugging needs to be opened, and roll adjustment is needed after the roll adjustment is opened

6) Select [Calibration] and do the calibration according to the screen wizard.



Figure 2.41 Calibration wizard



#### **2.2.6** Navigation line setting

Here takes the AB line for example of the navigationline.

1) Select [Width] in the main interface, set the width and offset of the task.



Figure 2.42 Set width and junction

2) Select [AB line], set A and B when creating a new navigation job.

Or import the AB line if there is already an AB line data in the tablet.

| SA SA                 |         | *               | 4            | cm 🔓   | 2.3 Spe  | Wid<br>4.1 | •      | ▼ 17:42 |
|-----------------------|---------|-----------------|--------------|--------|----------|------------|--------|---------|
| (A)<br>Base           |         |                 |              |        | ~        |            |        |         |
| station               | Iput AB |                 |              |        | X        |            |        |         |
| NO.                   | Select  | Field           | name         | upload | Туре     | Wid        | Offset | Wid     |
| Parameter             | 0       | 196912311901    |              | upload | straight | 10/        | 110    | ABline  |
| System                | 0       | 196912          | 2312018      | upload | straight | 121        | D      | Авчине  |
| settings              | ۲       | 196912          | 2312011      | upload | straight |            |        |         |
| Status                | Input   |                 | remo(eabline | Dele   | ete      | 1          |        | Start   |
| Worked area ' 0.028ba | 14      | 74              |              | HEL.   |          | irrent job | 196912 | 311901  |
| Honod dica. Orozona   |         | 1               |              |        | 1        | Trent job  | 190512 |         |
|                       | ц,      | $\triangleleft$ | 0            | U U    | L)>      |            |        |         |

Note: set up the AB line first, or the tractor cannot work.

Figure 2.43 Import AB line



3) Return to the home screen. Click [Start] to start the system.



Figure 2.44 Agricultural operation in progress



# **3.** Gyro Calibration

## 3.1 Single Gyro

#### Step 1: Select Single Gyro.

| "Sv | /stem  | Setting  | g">> | "More  | ,, |
|-----|--------|----------|------|--------|----|
|     | Dielli | Security | 5    | 111010 |    |

| Back         | LEAD AND A DUCK  | System settii | ngs            |           | \$ 2, 5.14       |
|--------------|------------------|---------------|----------------|-----------|------------------|
| Online value | 9                | AJ            | ngle sensor    | 1         |                  |
| Angle sensor | Single Gro       | A             | zimuth offset  | 0         |                  |
| Angle sensor | RTY120           | R             | oll offset     | 0         |                  |
| Angle sensor | Face up          | м             | lotor gain     | 10        |                  |
| ECU_MOTOR    | Position control | м             | lanual release | ۲         |                  |
| AB line type | Straight         | A             | rea statistics | Automatic |                  |
| Alarm        | 20               | U             | nit of         | Ми        |                  |
|              |                  |               |                |           |                  |
|              |                  |               |                |           | e te se se se se |
|              | Ϋ́               | ♦ 0           |                | <b>り</b>  |                  |

Figure 3.1 Single Gyro



| Back           |     |   | _   | Syste           | em settings |                  |                        | \$ 0p 8:02       |
|----------------|-----|---|-----|-----------------|-------------|------------------|------------------------|------------------|
| Coefficient of | -   | • |     | 100             | Foresight   | 2.3              |                        | I Auto foresight |
| Median value   | 0   |   | o   | Get             | 🗹 Log file  | e                |                        |                  |
| Minimum tire   | -30 |   |     |                 | Low sp      | peed mode        |                        | Slope correction |
| Maximum tire   | 30  |   |     |                 | Autom       | atic calibration |                        |                  |
| Drift          | 0   |   |     |                 | Turn le     | eft              |                        | Turn right       |
| Implement      | 0   |   |     |                 |             |                  | Terrain<br>compensatio |                  |
|                |     |   |     |                 |             |                  |                        |                  |
|                |     |   |     |                 |             |                  |                        |                  |
|                |     |   |     |                 |             |                  |                        | Moresss          |
|                |     | Ъ | > < | $\triangleleft$ | 0 [         |                  | <b>占</b> 》             | More             |

Figure 3.2 Single Gyro Calibration

Step 3: "Carlibration">> "Single gyro debugging"





Figure 3.4 Single Gyro Calibration

Adjust Azimuth Offset if there are deviation when using Auto-Steering. Always left deviation decrease "Azimuth Offset" value and always right deviation increase "Azimuth Offset" value.



| Back         | and the second second | (artic)      | System | settings        | ¥ 🕹 B:01   |
|--------------|-----------------------|--------------|--------|-----------------|------------|
| Online value | 9                     |              |        | Angle sensor    | 1          |
| Angle sensor | No angle sensor2      |              |        | Azimuth offset  | 0          |
| Angle sensor | RTY120                |              |        | Roll offset     | 0          |
| Angle sensor | Face up               |              |        | Motor gain      | 10         |
| ECU_MOTOR    | Position control      |              |        | Manual release  | •          |
| AB line type | Straight              |              |        | Area statistics | Automatic  |
| Alarm        | 20                    |              |        | Unit of         | Ми         |
|              |                       |              |        |                 |            |
|              |                       |              |        |                 |            |
|              |                       | <b>⊈</b> , < | a c    | ) 0             | <b>占</b> 》 |

Figure 3.7 Azimuth Offset for Auto-Steering Deviation



# **4.** Specifications

This chapter includes the specifications of T100 Control Tablet,

A10 GNSS Antenna and EMS2 Motor Wheel.

### 4.1 T100 Control Tablet

|                     | GNSS Performance         |                        |  |  |  |  |
|---------------------|--------------------------|------------------------|--|--|--|--|
| Signal Tracking     | GPS L1, L2               |                        |  |  |  |  |
|                     | GLONASS L1, L2           |                        |  |  |  |  |
|                     | BeiDou B1, B2 GALILEO    |                        |  |  |  |  |
|                     | E1, E5b QZSS L1, L2      |                        |  |  |  |  |
|                     | SBAS L1                  |                        |  |  |  |  |
|                     |                          |                        |  |  |  |  |
| GNSS Channels       | 432                      |                        |  |  |  |  |
|                     | Single Point Positioning | 1.5m RMS (Horizontal)  |  |  |  |  |
|                     |                          | 2.5m RMC (Vertical)    |  |  |  |  |
| Derivities Assessed | DGPS Positioning         | 0.4m (Horizontal)      |  |  |  |  |
| Position Accuracy   |                          | 0.8 (Vertical)         |  |  |  |  |
|                     |                          | 10mm+1ppm (Horizontal) |  |  |  |  |
|                     | KIK Positioning          | 15mm+1ppm (Vertical)   |  |  |  |  |
| Heading Accuracy    | 0.1 RMS @ 1m baseline    |                        |  |  |  |  |
| Time Accuracy       | 20ns RMS                 |                        |  |  |  |  |
| Velocity Accuracy   | 0.03m/s RMS              |                        |  |  |  |  |
| Reacquisition       | < 1s                     |                        |  |  |  |  |
| Correction          | RTCM 2.3/3.0/3.2         |                        |  |  |  |  |
| Date Output         | NMEA-0183                |                        |  |  |  |  |



| Heading and RTK         | 20Hz                                |
|-------------------------|-------------------------------------|
| update rate             |                                     |
| Network Protocol        | NTRIP, TCP/IP                       |
|                         | System Performance                  |
| Operating System        | Android 6.0                         |
| CPU                     | Quad-Core 1.5GHz                    |
| Memory                  | 2GB RAM + 16GB ROM                  |
| LCD                     | 10.1"Capacitive Touch Screen        |
| Resolution              | 1024x600 pixels                     |
|                         | Communications                      |
| Wi-Fi                   | 2.4GHz IEEE 802.11 b/g/n            |
| Cellular                | FDD-LTE 800 / 1800 / 2100 / 2600MHz |
|                         | TD-LTE 1900 / 2300 / 2500 / 2600MHz |
|                         | WCDMA 850 / 900 / 1900 / 2100MHz    |
|                         | GSM 850 / 900 / 1800 / 1900MHz      |
| Bluetooth               | V4.0                                |
| USB                     | USB 2.0 (host & debug) x1           |
| Audio                   | 3.5mm Audio Jack for Audio          |
| Serial Port             | RS232 x2, RS485 x1                  |
| CAN Port                | CAN x2 (J1939, CANOpen, ISO15765)   |
| Ethernet                | RJ45 (100M Ethernet) x1             |
|                         | Electrical                          |
| Power Input             | 9V~36V DC                           |
| Power failure detection | supported                           |
| Power output            | 12V DC x2                           |
|                         | Physical                            |
| Dimension               | 281mmx181mmx42mm                    |
| Weight                  | 1.5kg                               |



| Environmental          |                         |  |
|------------------------|-------------------------|--|
| Operating Temperature  | -20 C to +70 C          |  |
| Storage Temperature    | -40 C to +85 C          |  |
| Water & Dust proof     | IP65                    |  |
| Vibration              | MIL-STD-810G            |  |
| Road Vehicle Standards | ISO16750                |  |
| Humidity               | 0%~90%RH @ -20°C~+70°C  |  |
|                        | 30%~95%RH @ -40°C~+85°C |  |

## 4.2 A10 GNSS Antenna

Table 3.2 A10 GNSS Antenna

| Antenna Specification    |                          |  |  |  |
|--------------------------|--------------------------|--|--|--|
|                          | GPS L1/L2; BDS B1/B2/B3. |  |  |  |
| I racking signals        | GLONASS L1/L2            |  |  |  |
| Impedance                | 50 Ohm                   |  |  |  |
| Polarization             | RHCP                     |  |  |  |
| Axial Ratio              | ≤ 3dB                    |  |  |  |
| Azimuth Coverage         | 360°                     |  |  |  |
| Output VSWR              | ≤ 2.0                    |  |  |  |
| Peak Gain                | 5.5dBi                   |  |  |  |
| Phase Center Error       | ± 2mm                    |  |  |  |
| LNA Specification        |                          |  |  |  |
| LNA Gain                 | 40±2dB                   |  |  |  |
| Noise Figure             | ≤ 2.0dB                  |  |  |  |
| VSWR                     | ≤ 2.0                    |  |  |  |
| Input Voltage 3.3~12V DC |                          |  |  |  |



| Operating Current      | $\leq$ 45mA           |  |  |  |
|------------------------|-----------------------|--|--|--|
| Ripple                 | ± 2dB                 |  |  |  |
| Phy                    | vsical                |  |  |  |
| Dimension              | Φ152*62.2mm           |  |  |  |
| Weight                 | 374g                  |  |  |  |
| Signal Connector       | TNC Female            |  |  |  |
| Installation connector | 5/8" x 11 UNC Female  |  |  |  |
| Env                    | vironmental           |  |  |  |
| Operating temperature  | -45 C - +85 C         |  |  |  |
| Storage temperature    | -45 C - +85 C         |  |  |  |
| Damp                   | 45% - 95%             |  |  |  |
| Ме                     | chanical Drawing      |  |  |  |
| Top View               | Side View Bottom View |  |  |  |

## 4.3 EMS2 Motor Wheel

Table 3.3 EMS2 Motor Wheel

| Motor Performance |         |  |
|-------------------|---------|--|
| Rated speed       | 100 rpm |  |
| Rated torque      | 10 N·m  |  |



| Guaranteed continuous       | 100 mm                           |  |  |
|-----------------------------|----------------------------------|--|--|
| Guaranteeu continuous       | 100 1011                         |  |  |
| operation speed             |                                  |  |  |
| Maximum freewheel error     | 0 (without reducer)              |  |  |
| Supply voltage              | 8V~16V DC                        |  |  |
| Rated current               | 10A                              |  |  |
| Stall current               | 25A                              |  |  |
| Rated voltage               | 12V                              |  |  |
| Co                          | mmunication                      |  |  |
| Communication protocol      | ModBUS                           |  |  |
| Encoder resolution          | 1000 lines, 4000 pulses / circle |  |  |
| Encoder interface(protocol) | parallel, no protocol            |  |  |
| Encoder maximum output      | 200KHz                           |  |  |
| rate                        |                                  |  |  |
| Communication interface     | RS232                            |  |  |
| Phy                         | vsical                           |  |  |
| Dimension                   | Φ187x100.2mm (motor)             |  |  |
|                             | Φ410x32mm (steering wheel)       |  |  |
| Weight                      | 6.35kg (motor only)              |  |  |
| Material                    | Aluminum alloy                   |  |  |
| En                          | vironmental                      |  |  |
| Operating temperature       | -40 C - +105 C (motor)           |  |  |
| Storage temperature         | -45 C - +150 C (motor)           |  |  |



# **5.** Typical Applications

### **5.1** Base Station example

It is recommended using AllyNet system as the base station to cooperate with JY302 auto-steering system. With SMAJAYU Ntrip Caster Service, Ntrip Modem and Base Receiver, the AllyNet opens the possibility for users to transmit Real Time Kinematic (RTK) corrections via Internet (Ethernet or 2G/3G/4G) in a simple, user-friendly way, just using a SIM card or Ethernet cable without any need of a static IP.



Figure 5.1 AllyNet System Structure



There are various applications that JY302 GNSS Auto-Steering System can be used. Here list three working scenarios.

## **5.2** Spraying Pesticide



Figure 5.2 Spraying pesticide using JY302 auto-steering system

## **5.3** Transplanting



Figure 5.3 Transplanting using JY302 auto-steering system



## **5.4** Other tractor work



Figure 5.4 Other tractor works using JY302 auto-steering system



# 6. Appendix-1

Here list current available spline shafts, new spline shaft can be customized if your vehicle is not including in the table below. Contact SMAJAYU Technical Support via email android.development@smajayu.com for more details.

Table 5.1 List of Available Spine Shafts

| No. | Mark | Matched Vehicles                                                                 |
|-----|------|----------------------------------------------------------------------------------|
| 1   | А    | John Deere models (350, 720, 754, 804, 850, 854, 904, 954, 7830, 2204,           |
|     |      | 8295, 1204, 1404, 1354, 6605 and 5-754, 5-850, 5-854, 5-900, 5-904, N754, 6B954) |
|     |      | East Red models 954 and 1204                                                     |
|     |      | RENOMAN models 2204 and 1404                                                     |
|     |      | ZOOMLION PL2604                                                                  |
|     |      | Case New Holland Puma 2304                                                       |
|     |      |                                                                                  |
| 2   | A1   | John Deere model 5-754                                                           |
| 3   | В    | LOVOL models 900, 1004, 1654                                                     |
|     |      | East Red models 700, 750, 754, LX800, 90, 904, LF904, 1204                       |
|     |      | <b>John Deere</b> 484, KAT2804                                                   |
|     |      | <b>DFAM</b> models 704, 904, 1204, 1504                                          |
| 4   | N    | Case New Holland model 535                                                       |
|     |      | CLAAS model 2204                                                                 |
| 5   | KN   | Case New Holland model T1654                                                     |
| 6   | NH40 | Case New Holland model 904 (q17.4mm 40 teeth)                                    |
|     |      | Case New Holland Shanghai model SNH904                                           |
| 7   | D    | DEUTZ FAHR models ( $\varphi$ 20.4mm)                                            |
| 8   | D1   | <b>DEUTZ FAHR</b> models 1804, 2604 ( $\phi$ 20.6mm)                             |
| 9   | Е    | CHERY model RC954                                                                |



| 10 | JG | DFISEKI models PZ60, T954                         |  |  |  |  |  |
|----|----|---------------------------------------------------|--|--|--|--|--|
| 11 | W  | LOVOL models 654, 800, 900, 904, 1204, 1304, 1504 |  |  |  |  |  |
|    |    | DFAM model 750                                    |  |  |  |  |  |
|    |    | East Red model 2004                               |  |  |  |  |  |
| 12 | Т  | KUBOTA models M704K, 954                          |  |  |  |  |  |
|    |    | YANMAR rice trans planters                        |  |  |  |  |  |



# 7. Terminology

| BDS     | BeiDou Navigation Satellite System               |
|---------|--------------------------------------------------|
| DC      | Direct Current                                   |
| DGPS    | Differential Global Positioning System           |
| GLONASS | GLObal Navigation Satellite System               |
| GNSS    | Global Navigation Satellite System               |
| GPS     | Global Positioning System                        |
| PC      | Personal Computer                                |
| RMS     | Root Mean Squares                                |
| RTK     | Real-Time Kinematic                              |
| RTCM    | Radio Technical Commission for Maritime Services |
| USB     | Universal Serial BUS                             |



If you encounter difficulties during use, you can email our technical support team and we will solve any problems for you.

Address:Room311, F3 Shahe Xili, No2-2 North of Xili, Xili Town, Nanshan District, Shenzhen, China,518055. Email: support@smajayu.com & tech@smajayu.com

#### **Proprietary Notice**

All Information in this document is subject to change without notice and does not reflect the commitment on SMAJAYU. No part of this manual may be reproduced or transmitted by all means without authorization of SMAJAYU. The software described in this document must be used in terms of the agreement. Any modification without permission from SMAJAYU. is not allowed.



# 8. Set Imple and Joint width

## 8.1 Abstract

This paper mainly introduces how to set the specific operation of farm tool distance and handover line distance, and how to correctly set these two values in different operation scenarios.

### 8.2 Specific operation process

8.2.1 Before setting these two values, we first need to understand their specific meaning. As shown below:

**Imple** (implement width, the distance between the two most seed rows) **Joint width** (distance between two adjacent seed rows)





8.2.2 There are three possible situations when setting these two data.

(1) When working in the field, it is necessary to measure and set the width and joint distance.

(2) When working in the field, the width needs to be measured and set, but the joint distance is 0.

(3) If the width distance to be input is less than the measured distance of agricultural tools, the input width shall be measured according to the actual situation

8.2.3. After determining the width and joint data to be input, we can input these data on the software. The specific operations are as follows:



(1) Click the width button as shown in the figure.

(2) Click the Width button as shown in the figure.





(3) Enter the Imple and Joint width data in the places shown in the figure, and then click OK to operate normally.

| Back       |       | w                  | orking wid | th   |          |        | ♀ ⁴⊿ ≸ 8:02 |
|------------|-------|--------------------|------------|------|----------|--------|-------------|
| Imple- 2.8 |       | Joint width 0.0    |            | ]    |          |        |             |
| 1          |       |                    |            |      |          |        |             |
|            |       | /                  |            |      |          |        |             |
|            |       |                    |            |      |          |        |             |
|            |       |                    |            |      |          |        |             |
|            | 11111 |                    |            |      |          |        |             |
|            | /     |                    |            |      |          |        |             |
|            | Ok    |                    |            |      |          | Cancel |             |
|            |       |                    |            | 1.73 | ALC: NOT |        | 1.1         |
|            | Ц     | $\bigtriangledown$ | 0          |      | L)       |        |             |



## JY302 FAQ

What is the working accuracy of JY302?
2.5 cm

#### • Does JY302 need internet for work? If there is a network, use the network; if there is no network, use the radio signal.

• Is the JY302 tablet with battery? Without

#### • What is the function of the LED light on the top of the JY302 panel?

Indicates the direction of the error, if the error of the AB line is on the left, the light on the left is on. The larger the error, the more the light is on.

#### • How do I know if JY302 can be compatible with my tractor?

JY302 can be used if your tractor is steered with a steering wheel and it matches our spline model. For specific measurement standards, please refer to the document "Measure spline.pdf"

#### • Why does JY302 have two A10s, and what are their functions?

One for positioning (connected to ANT1 port) and one for orientation (connected to ANT2 port)

Because JY302 has high requirements on accuracy, using two A10s is more accurate (accurate because the base station is connected to realize differential positioning), and the orientation can obtain the heading information of the tractor faster, ecision, and if the base station is connected, it is differential precision.

#### • What work options does the auto guidance system have?

1. Walk in a straight line

2. Walk the curve

3. Take the historical path (only one historical path can be determined, and it will not be extended

which is easy to make adjustments. If the base station is not connected, it is single-point pr

#### What is the function of the accessory (switch)?

Open the automatic driving software. During the official operation, press the switch button to turn on the automatic driving function without clicking the steering wheel icon on the screen.

#### • Sensors (two optional):

Angle sensor (installed on the front wheel)
IMU (installed in the car)

**SMA**JAYU

#### • About auto guidance system (JY302)

1. Auto guidance system only controls the steering wheel, and other functions are not affected.

2. Auto guidance system must be powered.

3. Auto guidance system is activated, manually turn the steering wheel to release the navigation (the manual release level can be lowered).